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Abstract
An improved variational path integral approach is developed and applied to the
quantum double-well potential, in which part of the quartic term of the potential
is included in the trial action. The expression of the effective classical potential
(ECP) under a non-Gaussian expectation is obtained. Here the frequency and
fourth-orderderivative of the potential are treated as two variational parameters,
determined by the minimization of the ECP at each point. We calculate the ECP,
the free energy and the level splitting of a symmetrical double-well potential. It
is shown that the present results are better than those of the Feynman–Kleinert
Gaussian variational method.

PACS numbers: 03.65.Yz, 03.65.Db, 05.70.Ce

1. Introduction

Feynman proposed the well-known effective classical potential (ECP) approach to calculate
the partition function of a quantum system described by the path integrals in his two textbooks
[1, 2]. The starting point is that the exponentiation of the kinetic action is regarded as a
Gaussian distribution and the path integrals are converted into a one-dimensional averaging
under this distribution. Jensen’s inequality in the probability theory is applied to the functional
integrals and an upper bound for the free energy is found. A considerable improvement on
Feynman’s original variational method has been proposed by Giachetti and Tognetti [3], and
independently by Feynman and Kleinert (F–K) [4]. The basic idea is to combine the quadratic
term of the potential and the kinetic energy to make a quadratic trial action. Then the oscillator
frequency of the potential is considered to be a variational parameter and is determined
by the minimization of the ECP. In fact, the F–K variational path integral method can be
understood to involve analytically most information in the trial action, and the remaining action
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is decreased as much as possible. Some reviews can be found in the books by Kleinert [5] and
Weiss [6].

Recently, Kleinert and his collaborators have developed a third-order perturbation
expansion to improve the accuracy of the problems of the anharmonic oscillator [7–9]. They
expanded the action into a perturbation series and did not use the Jensen’s inequality, the
higher-order approximation for the ECP was iterated. The results obtained are more accurate
than the F–K approach. However, it is still based on the Gaussian expectation technique. This
method could cause a divergent difficulty when one applies it to a multi-stable potential [10]
or a nonlinear dissipative system [11–13] near the crossover temperature [10].

Moreover, the accuracy of the variational path integral approach can be checked by the
effective oscillator frequency of the ECP; i.e. when the temperature is lowered, the effective
oscillator frequency at the bottom of the potential well will converge to the difference between
the second and first quantal energy levels. For the anharmonic potential, the procedures are
very good. But, if the method is applied to the double-well potential with a high barrier, the
variational result diverges greatly from the exact value of quantum mechanics [14]. Indeed,
the usual variational path integral method uses the Gaussian smeared procedure. At low
temperature, the eigenvalues of the low-order fluctuation models will approach zero, thus the
corresponding integrals diverge [6, 10]. The effective oscillator frequency in the F–K method
is much larger than the realistic frequency.

In this paper, we generalize the Gaussian measure to the non-Gaussian measure consisting
of part of the quadric term of the potential, and we introduce a new trial action with two
variational parameters. Thus, the remaining action arrives at a local minimum for a double-
well potential. We compare the non-Gaussian measurement technique with the F–K method
for the double-well potential.

2. Approach

2.1. Fourth-order trial action

In Euclidean space, a quantum particle provides the centroid of its thermal path x0 =
(h̄β)−1

∫ h̄β

0 x(τ) dτ , where x(τ) = x0 + x1(τ ), x1(τ ) is the fluctuation part of the trajectory, β
is the inverse temperature and τ is the imaginary time. The partition function of the system is
written as a functional integral form [1–6]

Z =
∫ ∞

−∞

√
m

2πh̄2β
dx0

∮
D[x1(τ )] exp

{
−1

h̄

∫ h̄β

0
dτ

[
1

2
mẋ(τ)2 + V (x(τ ))

]}
. (1)

The periodic paths with x(0) = x(h̄β) are now written as a Fourier decomposition, so that the
paths and the functional integral measure have the following forms [5, 6]

x(τ) = x0 +
∞∑

n=−∞,n �=0

Xn exp(iθnτ )

(2)∮
D[x1(τ )] =

∞∏
n=1

[∫ ∞

−∞

∫ ∞

−∞

βmθ2
n

π
dReXn dImXn

]

where θn = 2πn/h̄β are the Matsubara frequencies. In order to have a real x(τ), we must
require that Xn = X∗

−n. It can easily be shown that the same measure is applicable to any
system with the standard kinetic term [5, 6].
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With the measure of integration (2), if one is able to perform the n �= 0 integrals, this
would leave Z as a one-dimensional integral

Z =
∫ ∞

−∞

√
m

2πh̄2β
dx0 exp[−βW(x0)] (3)

where W(x0) is called the ECP. This agrees with the classical statistical partition function
when the temperature T → ∞.

In this paper, we consider a symmetrical double-well potential

V (x) = − 1
2x2 + 1

4gx4 (4)

where g is the coupling constant. We expand the potential into

V (x(τ )) = 1
2m�2(x0)(x(τ ) − x0)

2 + 1
4mc4(x0)(x(τ ) − x0)

4 + Ṽ (x(τ )) (5)

everywhere. Here, �2(x0) and c4(x0) are two x0-dependent variational parameters.
Substituting equations (2) and (5) into equation (1), we yield a fourth-order trial action

S =
∞∑

n=1

h̄βm
[
θ2
n + �2(x0)

]
XnX−n +

3

2

∞∑
n=1

h̄βmc4(x0)X
2
nX

2
−n + Srem (6)

where the remaining part of the action is given by

Srem =
∫ h̄β

0
V (x(τ )) dτ − h̄βm�2(x0)

∞∑
n=1

XnX−n − 3

2
h̄βmc4(x0)

∞∑
n=1

X2
nX

2
−n. (7)

Then equation (3) can be expressed by an averaging under a non-Gaussian distribution, i.e.

exp[−βW(x0)] =
∮

D[x1(τ )] exp

{
−mβ

∞∑
n=1

AnXnX−n

− mβ

∞∑
n=1

BX2
nX

2
−n

}
exp

(
−1

h̄
Srem[x(τ)]

)

= Z1(x0)

〈
exp

(
−1

h̄
Srem

)〉
2

(8)

with

Z1 =
∞∏

n=1

∫ ∞

−∞

∫ ∞

−∞

βmθ2
n

π
dReXn dImXn · exp

[
−mβ

∞∑
n=1

(
AnXnX−n + BX2

nX
2
−n

)]

=
∞∏

n=1

Inθ
2
n . (9)

Here, An = θ2
n + �2(x0), B = 3

2c4(x0),

In =
√

πmβ

4B
erfc

(
An

√
mβ

4B

)
exp

(
A2

n

mβ

4B

)
(10)

as well as the bracket 〈· · ·〉2 indicate the averaging under the following normalized non-
Gaussian distribution:

Z−1
1 exp

{
−mβ

∞∑
n=1

(
AnXnX−n + BX2

nX
2
−n

)}
. (11)

If �2(x0) < 0, the value of An could be equal to zero. The expectation of the
thermodynamical functions should diverge in the F–K method with B = 0 [4, 5] and then
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I−1
n → An. Because B is positive for a bound potential in general, the value of In will remain

finite while An → 0, thus the statistical average of any physical quantity under distribution
(11) always exists.

To optimize the effective partition function, we apply Jensen’s inequality, 〈exp(−F)〉 �
exp(−〈F 〉), to equation (8), namely,

exp[−βW(x0)] � exp[−βW1(x0)] = Z1 exp

{
−1

h̄

〈∫ h̄β

0

[
V (x(τ ))

− 1

2
m�2(x0)(x(τ ) − x0)

2

]
dτ − 3

2
h̄βmc4(x0)

∞∑
n=1

X2
nX

2
−n

〉
2

}
. (12)

This leads to a bounded W(x0) by W1(x0) from above, W(x0) � W1(x0).

2.2. Non-Gaussian expectation

The average of the double-well potential V (x(τ )) under distribution (11) can be found
exactly. For example, it is straightforward to calculate the integral of the fourth moment
of the coordinate

1

h̄β

〈∫ h̄β

0
x(τ)4dτ

〉
2

= 〈x4
0

〉
2 + 6x2

0

∞∑
n=1

2〈XnX−n〉2 + 6
∞∑

n=1

〈
X2

nX
2
−n

〉
2

+ 3



( ∞∑

n=1

〈2XnX−n〉2

)2

−
∞∑

n=1

4(〈XnX−n〉2)
2


 . (13)

Then we obtain the expectation of the remaining action

1

h̄β
〈Srem〉2 = −1

2
x2

0 +
1

4
gx4

0 +
1

2

(
3gx2

0 − m�2 − 1
) ∞∑

n=1

2〈XnX−n〉2

+
3

4
(g − mc4)

∞∑
n=1

2
〈
X2

nX
2
−n

〉
2

+
3

4
g



( ∞∑

n=1

〈2XnX−n〉2

)2

−
∞∑

n=1

4(〈XnX−n〉2)
2


 .

The ECP is finally obtained

W1(x0) = − 1

β

∞∑
n=1

ln
(
θ2
nIn

)
+ Va2(x0) − 1

2
m�2(x0)a

2(x0)

+
3

4
[g − mc4(x0)]ζ(x0) − 3

4
gη(x0) (14)

where the smeared potential of (4) in the above equation is given by

Va2(x0) = − 1
2x2

0 + 1
4gx4

0 + 1
2

(
3gx2

0 − 1
)
a2 + 3

4ga4 (15)

and

a2 =
∞∑

n=1

2〈XnX−n〉2 ζ =
∞∑

n=1

2
〈
X2

nX
2
−n

〉
2 η =

∞∑
n=1

4〈XnX−n〉2
2. (16)
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Three quantities in equation (16) are evaluated from the integral In in the polar coordinate
[6, 10], i.e.

〈XnX−n〉2 = − 1

mβ

1

In

∂In

∂�2

〈
X2

nX
2
−n

〉
2 = − 1

mβ

1

In

∂In

∂B
. (17)

Considering �2 and c4 as functions of x0 which are calculated at each point x0, we
minimize W1(x0,�

2(x0), c4(x0)) with respect to the parameters �2(x0) and B(x0). Explicitly,
the combined equations need to be solved numerically

∂W1

∂�2
= 3

4
g

∂

∂�2
(ζ − η) − 1

2
mB

∂ζ

∂�2
+

(
∂Va2

∂a2
− 1

2
m�2

)
∂a2

∂�2
= 0

(18)
∂W1

∂B
= 3

4
g

∂

∂B
(ζ − η) − 1

2
mB

∂ζ

∂B
+

(
∂Va2

∂a2
− 1

2
m�2

)
∂a2

∂B
= 0.

Indeed, the F–K quadratic variational method [4] is equivalent to our approach while B = 0,
in this case, ∂V

a2

∂a2 − 1
2m�2 = 0. However, here we have introduced a small positive parameter

B; the derivative of W1(x0) with regard to B is determined by the first term on the right-hand
side of the second equation of (18). One can expand In into a power series of B as B → 0

In = 1

An

(
1 − 2B

mβA2
n

+
12B2

m2β2A4
n

)
(19)

so that

ζ − η = − 8

m3β3

∞∑
n=1

B

A4
n

(20)

is negative. Thus, it is concluded that the variation of c4 will result in an accurate estimation
for the ECP.

3. Results and discussion

In this paper, the natural units h̄ = m = 1 are used. We solve numerically the first equation
for the variable �2 in (18) for different c4, where the value of c4 is sought to yield the best
lower limit of W1(x0) at each point x0.

In figure 1, the ECP of the double-well potential (4) with the coupling constant g = 0.2 is
plotted for different temperatures and compared with the F–K method [4]. It is observed that
our result is lower than that of the F–K method. Especially, when the temperature decreases
and the coupling constant g becomes small, the difference between the present method and
the F–K method is increased. It is noticed that there are new metastable points near the point
x0 = 0 when β � 25. This can be understood well from the point of view of quantum
mechanics. It originates in a reiterative effect of two separate sets of oscillator wavefunctions.
The detailed correction for the free energy is not very large, but may give rise to large effects
on the problems related to the barrier dynamics and tunnelling.

In figure 2, we calculate the free energy F = − 1
β

ln Z as a function of the inverse
temperature using our procedure and the F–K method. Because the main contribution of the
free energy comes from the bottom of the potential well, where the effect of the negative
oscillator frequency of the trial potential is weak, thus the correction to the free energy is
not easily observed. However, the effects of the fourth-order term of the potential cannot be
ignored for β > 5.

In figure 3, the effective oscillator frequency �2(x0) at the original point of coordinate
x0 = 0 is plotted as a function of the inverse temperature. As mentioned, the precision of
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Figure 1. The temperature-dependent ECP. The solid and dotted curves represent our results and
those of F–K [4], respectively. The values of β are equal to 5.0, 10.0 and 25.0 from top to bottom.

3 6 9 12 15
0.39

0.40

0.41

0.42

0.43

F

β

Figure 2. The free energy as a function of the inverse temperature. The solid and dotted curves
represent our results and those of F–K [4], respectively. The coupling parameter g = 0.8 and 1.2
from top to bottom.

the variational path integral approach can be checked by the oscillator frequency of the ECP.
When the temperature approaches zero, the frequency at the bottom of the ECP will become
the quantal energy difference of the first excited state and the ground state. In the F–K method,
in order to yield convergent results of the path integrals, the oscillator frequency at the saddle
point must be larger than the realistic frequency, so the calculated results are always larger
than the exact value. For instance, the error is larger than 70% for the double-well potential
with a coupling constant g = 0.4. It is impossible to obtain the exact expression of the
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Figure 3. The oscillator frequency of the ECP at x0 = 0 as a function of the inverse temperature
for different coupling constants. The solid and dotted curves represent our results and those of
F–K [4], respectively.

Table 1. The difference between the first and ground energy levels.

g 	E � (our results) � (F–K results)

0.4 0.2969 0.386 0.486
0.8 0.6159 0.701 0.760
1.2 0.8166 0.898 0.948
1.6 0.9730 1.049 1.093
4.0 1.5058 1.575 1.634

oscillator frequency at a low temperature limit, so we must carry out a numerical extrapolation
to T → 0. When g > 0.36, the barrier of the ECP disappears, and the original double-well
potential is changed into a single well. So, we need to calculate the oscillator frequency of
the ECP at x0 = 0 only. It is seen from figure 3 that the oscillator frequency of the ECP can
approach a constant when the temperature is lowered.

More detailed data are shown in table 1. It is shown that our result is close to the exact
value of quantum mechanics [12] compared with the F–K method.

4. Summary

In this paper, we have presented an improvement of the F–K procedure for obtaining an
estimate of the minimum energy of a particle in a quantum double-well potential. For a
symmetrical double-well potential the ECP was obtained, where the Gaussian expectation
is replaced by a non-Gaussian average. In comparison with the previous calculation of the
energy-level splitting using the F–K method, the accuracy of the present improved approach is
increased by about 50%. It is possible that the expectations of the thermodynamical quantities
remain finite when the temperature approaches the crossover temperature, and the higher-order
perturbation expansion can be applied safely. Moreover, this procedure is always convergent.



7016 J-D Bao and H-Y Wang

The present approach seems to be quite special and tailored to the double-well problem.
It provides an improvement relative to the corresponding F–K procedure and still deviates
from the desired results. However, if we consider an equivalent Gaussian distribution,
Z−1

1 exp
(− mβ

∑∞
n=1 I−1

n XnX−n

)
, and combine with a convergent higher-order perturbation

expansion, more accurate results may be estimated. Furthermore, we believe that the present
method can be employed in the case of tunnelling states. It can also be applied to other
potentials, for example, the periodic potential, nonlinear dissipative system, barrier expansion,
etc. We should observe more detailed quantum behaviours of a system near the barrier top.
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